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Recall: The Control Loop

w(t)
- €(t) u(t) l+
r(t) —>(O———> Controller ﬁ@—» System T» y(t)
(1)
= Reference r(t) = Input disturbance w(t)
= Error e(t) = Measurement noise v(t)
= Input u(t) = Ouput y(t)

Goal: Make y(t) = r(t), no matter what w(t), or v(t) are



This Week: PID Control

PID - Proportional, Integral, Derivative Control

de = Most common controller
Ta—(t)
W dt = Used in billions of devices
e(t) L v i Ky — u(t) " Very simple and effective
ol
L e(T)dr

Drive error to zero and keep it there

P: wu(t) = Kpe(t)

I u(t) = /t Kre(r)dr Zero if and only if error is zero and
Jo not changing
de(t)
dt

D: wu(t)=Kp



Example



DC Motor Speed Control

RK® w M:(t)
+ I\_/I +
oS- BAHLT-0
- F J -

Electrical dynamics:?
u(t) = Vems + Ri(t) = KPw(t)+ Ri(t)
~—~ ~~~ N
Voltage Back-EMF Resistance

Mechanical dynamics:

(i) = K®i(t) = Jo(t)+ fw(t) + M)
~—~ S

Torque Inertia Viscous friction Parasitic torque

! Assuming that the motor inductance is negligible



Open-Loop Block Diagram

Ko
f <
- 1 i () 4 ¥ 1 | R
u(t) L ke RO e / - w(t)
M,(t)

On the board: Simplify



Open-Loop Block Diagram

M (s)

|

R
K®

+ v Ko
u(s) Hé—’ sJR+ Rf 1 (K®)2 —w(s)

Ko R
“(8) = STRT Rf + (K9?) (“(5) - EMT(S))

Response to a step u(s) =1/s Response to a step M, (s) = 1/s
Ko _RIH(K®)?, 1 _Rft(K®)?,
= —(1— JR g ty=——1|(1— JR
w(t) IR ( e ) w(t) 5 ( e

LComment on why we can drop gain on disturbance.



Open-loop System Response

0.57
— w(t) in response to step in u(t)
—— () in response to step in Mr(t)
OA
_0.5 T T T T 1
0 1 2 3 4 5

Time (s)



Proportional Control



Proportional Control

e(t) —  Kp  —u(t) E(s) — K —U(s)

Proportional Control

u(t) = Kpe(t) = Kp(y(t) — r(t))

Set the system input to be proportional to the error

Intuition: Controller responds strongly to a large error and weakly to a small one

Only design choice: Kp
What impact does K p have on the system behaviour?



Example: Motor Control

w(t)

Recall:

o(t) + 1(f+(K§’))w<t> I (w0 - 7500:0))

Output: w(t) speed of motor Input: u(t) electrical current
J rotational inertia, R electrical resistance, f viscous friction, ® inductance



Example: Block Diagram

R
— e Mr
. We — W +l+ Motor and
we —>(O——| Controller —(O— )

I - load

System equation:
o0+ 5 (14 E2 Va0 = 52 (w0 - Fon0)

Controller equation:

u(t) = Kp(we(t) — w(t))
Intuition:

= Speed slower than desired (w < w.): Increase current

= Speed faster than desired (w > w.): Decrease current

10



Proportional Motor Speed Control

With the controller in place, the system equation is:?

a0+ 5 (14 E2 )0 = X2 Ky (elt) - wt0)
e e

w(t) + aw(t) = BEp(we(t) —w(t))
Re-arranging gives:
W(t) + (a+ BEp)w(t) = BEKpw.(t)

This is a standard first-order system.

2Note that we've assumed that the disturbance is zero here M.,.(t) = 0.
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Recall: Behaviour of First-Order Systems

z(t) + Tx(t) = yo(t)

1. Take the Laplace transform:
sX(s)+7X(s) =4V (s)
X(s)(s+7) =V (s)
2. Suppose the v(t) = v, for t > 0 for some constant v, then V(s) = 2=.
2

X(s) = ch

3. Take the inverse transform to compute the time-domain response

z(t) = lvcﬁ_l {% - j_ s} = lp(l—e )

2 =2

12



Response of Motor Under Proportional Control

BKp _ —(a+BKp)t
t) = ————w.(1 — r
wlt) = a1 )

Take the constantstobe: J=f=K=d=R=1.

Suppose at time t = 0 a speed change is requested = @, = 1.

The time response is now:

Kpw. -
wlt) = 55 (1 emrrr)

How should we choose Kp?

13



Response of Motor Under Proportional Control

1.5

Kp=1,7=0.3

05] ] /

Speed w(t)
[es)

—0.5 ] N

~15 | | | | |
0 0.5 1 1.5 2 2.5 3

Time (s)
14



Response of Motor Under Proportional Control

1.5
Kp =10, 7 =0.08

Kp=1,7=0.3

/
%

Speed w(t)
[es)
|

—0.5 ] N

~15 | | | | |
0 . .

Time (s)
14



Response of Motor Under Proportional Control

1.5 Kp =100, 7 =0.01
Kp =10, 7 =0.08

Kp=1,7=0.3

0.5

NN

Speed w(t)
[es)

jen] T T \ |
l

—_

-0.5

—-1.5

1.5 2 2.5 3
Time (s)

0.5
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Response of Motor Under Proportional Control

1.5 Kp =100, 7 =0.01
Kp =10, 7 =0.08

|

Speed w(t)

p=—-—17=1

. /
/!
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Impact of Proportional Gain

= Stability

= An incorrect gain can cause the system to be unstable

= Transient response

= A larger gain will normally cause the system to react more quickly
= Larger gain — larger input. However, you do not have unlimited input authority!

= Steady-state offset

= Many systems will have a steady-state offset with only proportional control

Kpoe K
lim w(t) = lim Lwc(l - e*(2+KP)t) P

t—o00 t—o0 2+ Kp 2+pr°7£w°

Another component needed to ensure steady-state error is zero — Integrator

15



Why Not Choose the Maximum Kp?

Kp =100, 7 = 0.01

/Kp =10, 7 = 0.08

0.8 |- =
0.6 |- i

0.4 i /KP:LT:O.3

0.2 n

Speed w(t)

0 | | | | |
0 0.5 1 1.5 2 2.5 3

Time (s)

= Faster response requires a faster actuator
= Need more input authority (‘stronger’ actuator)
= You may just be amplifying noise (more later)

16



Proportional Integral Control



Proportional Integral (Pl) Control

e(t) L j@;» K, = u(t) E(s) T
= ft e(T)dr j L

Proportional Integral Control

u(t) = Kp <e(t) + % /0 t e(T)d7'> — Kpe(t) + K; /0 e(r)dr)
where K; := I;f
U = 5y (14 755 ) ) = (Kr + 52 ) £G)

= Input is proportional to the integral of the error

= Intuition: Control input continues to grow until the error goes to zero



Final Value Theorem

How to compute the steady-state value of a signal?

Final Value Theorem

If and only if the linear time invariant system producing z(¢) is stable, then

lim z(t) = lim sX (s)
t— o0 s—0

The system must be stable!

= If it's not, then the FVT will give you the wrong answer (it won't predict an
unbounded, or oscillatory response)



Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

£(#0) - [ #50

19



Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

£(150) - [ 250

=z(t)e "

- (—s)/ z(t)e *'dt Integration by parts
0 0
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Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

£(150) - [ 250

- (—s)/ z(t)e *'dt Integration by parts
0 0

=z(t)e "

= lim z(t)e *" —z(0) + sL (z(t))

t—o00

=0 x(t) is stable
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Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

£(150) - [ 250

- (—s)/ z(t)e *'dt Integration by parts
0 0

=z(t)e "

= lim z(t)e *" —z(0) + sL (z(t))

t—o00

=0 x(t) is stable

= —z(0) + sX(s)

19



Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

lim/ d2(t) ~st gy — lim —z(0) + sX(s)
0

s—0 d s—0

20



Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

lim/ d2(t) ~st gy — lim —z(0) + sX(s)
0

s—0 d s—0

*dx(t) o
/0 dt dt = 7£(0)+11L%=5X(S)

20



Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

lim/ d2(t) ~st gy — lim —z(0) + sX(s)
0

s—0 d s—0

*dx(t) .
/0 dt dt = —z(0) + 113%) sX(s)

lim z(t) — z(0) = —x(0) + }1_% sX(s)

t—o0

20



Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

lim/ d2(t) ~st gy — lim —z(0) + sX(s)
s—0 0 dt

s—

“dx(t) .
/0 dt dt = —z(0) + 113%) sX(s)
t—o0

lim z(t) — z(0) = —x(0) + }1_% sX(s)

lim z(t) = lim sX(s)

t— o0 s—0

There is a similar relation between the limit as t goes to zero, and s goes to infinity.

20



Example: Motor Control

w(t) + aw(t) = Pul(t)

Control input: u(t) = Kp(e(t) + = fo T)d7) — U(s) = Kp(1 + = )E(s)

T;s
(s + a)9) = 5, (14 71 ) (o) - 9(s)
) = e jﬁ“,j(i:fzg;piz + BK, 2e(e)
Steady-state error in response to a step in the command: Q.(s) = <=:
Jim () =l o0
i s BK,(Tis + 1) We

s—0 T382 4+ Ti(a+ BKyp)s + BK,p s

= W,
If the system is stable, then there is no steady-state offset

21



Motor Speed Control

15
—_~ 17
3
3 Kpy=5T =
(]
Q.
[9p]
0.5-
0 L L L
0 0.5 1 15 2 2.5 3

Time (s)

System response to a speed change command @, = 1

= No integrator — system settles at the wrong speed
22



Motor Speed Control

1.5
1l K,=5T =02
E
3 K,=5,T =
[}
[oR
()
0.5¢
0 | | |
0 0.5 1 1.5 2 25 3
Time (s)

System response to a speed change command @, = 1

22



Motor Speed Control

1.5
1l K,=5T =02
El K,=5T =1
° K,=5T =
(0]
(]
Q.
7
0.5¢
0 | | |
0 0.5 1 1.5 2 2.5 3
Time (s)

System response to a speed change command @, = 1

22



Motor Speed Control

15

1
El
e
@
o}
o
w

0.5

0O 0.5 1 1.5 2 25 3
Time (s)

System response to a speed change command @, = 1

= Tuning the system is now more complex (more later)
22



Rejection of Constant Disturbances

1.5

Pl Controller
Constant disturbance rejected

Speed w(t)

0.5 P-Controller
Constant disturbance
causes offset

0 3
Time (s)

= Disturbance impacts the system fromt =2 tot =4

= The integrator rejects the disturbance and keep the system at the setpoint
23



Interactive Simulations

External example 1.29

24



Pl Control - Summary

et) —y "O| Ky - ult) E(s) — O Ky (- U(s)
T%fot e(T)de s;“i j

= Steady-state offset

= Integrator ensures zero offset (more details later)
= Stability

= Adding an integrator can easily destabilize the system
= Transient response

= Tuning is now more complex (more details later)

25



Proportional Derivative Control



Proportional Derivative (PD) Control

e(t) -4 SO Ky | ult) E(s) O] Ky > UCs)

Td@(t) J > Tds I

dt

Proportional Derivative Control

u(t) = Kp (e(t) + de—f(t)) = Kpe(t) + de*:(t)

where Kd = KPTd

U(S) = Kp(l + TdS)E(S) = (Kp =+ KdS)E(S)

= Input is proportional to the derivative of the error

= Intuition: React to fast disturbances more quickly than slow ones



PD Control : An Interpretation

Consider the value of the error T; seconds into the future:

d
e(t +Ty) ~ e(t) + d—te(t)Td
15
E(O) + $8(0)Td E(f)
1, o
e(Tq)
0.5 1
e(0)

0

035 0 05 1

Time (s)

One interpretation: Feedback on an estimate of the future error

27



Motor Control Example

We now want to control the position 6 of the motor:

i(t) + ab(t) = Bu(t) u(t) = Kp (e(t) + Td%(t))

— Kp (Gc(t) —o(t) - Td%(t)) 3

Take the Laplace transform:

(s> + as)O(s) = BKpO.(s) — BK,(1 + Tys)O(s)
BKp
s2+ (a+ BKpTa)s+ BKp

O(s) = Oc(s)

The gain T,; impacts the damping of the closed-loop system. (More later)

3Note that the derivative of 0, (t) is assumed to be zero here

28



Response of Closed-Loop System to PD Control

1.5 Kp=20,T,=0
1
=%
C
9
.c"%
o
o
0.5
o L L L L L
0 1 2 3 4 5 6

29



Response of Closed-Loop System to PD Control

1.5 Kp=20,T,=0
Kp =20,T4=0.1
. 1 P am——
=%
C
9
.("%
o
o
0.5
o L L L L L
0 1 2 3 4 5 6

29



Response of Closed-Loop System to PD Control

1.5 Kp=120,T4=0
Kp =20,T4=0.1
R 1 —
=%
C
9
.“§
o K,D:20,Td:1
0.5 :
o L L L L L
0 1 2 3 4 5 6
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Implementing Derivative Action

de Tys
TdE(t) TysE(s) ~ 7%3 1

E(s)
= Not a proper expression, and cannot be implemented in a circuit

= Digital approximation: wu(t) ~ w

Error signal Derivative
2
0
1.5
-05 ol
o ; [
T 1 % 0\ /
©
-0.5¢ —
_18}
f
-1.5}
ol
‘ -2
0 2 4_ 6 10 0 4 10
Time (s) Time (s)

30



Implementing Derivative Action

d T,
7,2 () TysE(s) ~ ﬁil
N

Qi E(s)

= Not a proper expression, and cannot be implemented in a circuit
e(t)—e(t—A)
A

= Digital approximation: u(t) ~

Sampled error signal Approximate Derivative
2
15t
1t
o8 ! j
3 0\/—
(3}
°
-0.5
f
-15f
-2
0 2 4 6 10 0 2 4 6 10
Time (s) Time (s)

30



Implementing Derivative Action

de
TdE(t)

TysE(s

)N TdS
%s—i—l

= Not a proper expression, and cannot be implemented in a circuit

= Digital approximation: wu(t) ~

Sampled error signal + Noise

4 6
Time (s)

10

e(t)—e(t—A)
A

deldt (1)

Approximate Derivative

4 6
Time (s)

30



Implementing Derivative Action

de Tas
Ta—(t TysE(s) ~ ——
45 0) 8E(s) 7 L)
= Not a proper expression, and cannot be implemented in a circuit
= Digital approximation: wu(t) ~ w

Sampled error signal + Noise ) Filtered Derivative

=
[

o
3]
\

|
o
«
!
!

deldt (t)
o
Y.

-1.5¢

4 6 8 3 2 4 6
Time (s) Time (s)
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PD Control - Summary

+

e(t) —s 'O;’ K, (u(t) E(s) —O+—> K, — U(s)

Ty (t) o Tys

= Stability
= Can add extra damping to the system.
= Intuition: Acts to reduce velocity

= Transient response
= Tuning is now more complex (more details later)
= Robustness

= Operates on high-frequencies more than lower-frequencies
= Will amplify high-frequency noise acting on the system
= Derivative controllers are always combined with low-pass filters

31



Proportional Integral Derivative
Control



Proportional Integral Derivative (PID) Control

r Td%(t) Tys
e(t) L B u(t) E(s) Q—» U(s)

de 1

u(t) = Kp (e(t) + L O+ = /0 t e(T)dT>

t
= Kpe(t) + de—:(t) + KZ-/ e(r)dr
0

Or in the Laplace domain:

7

U(s) = Kp <1 +Tus+ Tl ) B(s) = (Kp + Kas + K%) B(s)

32



Many Equivalent Formulations

Parallel Formulation Mixed Formulation

Kas F, Tys
E(s) o + >ii()s) E(s) + . Kp BCIQ)
+
1 { {

Ki— sT;
s

1
U(S) =Kp+KdS+Ki;

Series Formulations

E(S)f Kp % + Ts S + U(s)
s ; % % s
: ; :
U(S) =Kp (1 —+ Tis) (1 + Tds)

33



Balloon Altitude Control - Closed-Loop Response

20

éﬁ
>
N

~

P

>

D

D

<>

(5

E
g
E AR
2
5
O 1 1 1 1
0 2000 4000 6000 8000 10000

Time (sec)

34



PID Control

Proportional = Sets the ‘aggressiveness’ of your system.
= Higher generally means that the system will respond more
strongly to disturbances

Integral = Added to ensure zero steady-state offset
= Not necessary if your system already has ‘integral action’
= Danger: Can easily de-stabilize the system

Derivative = Increase the damping of the system - improve stability

= Can amplify high-frequency noise
= Less often used

35



Ziegler-Nichols Tuning




Tuning: How to choose the parameters Kp, T; and 14?7

= 1,637 books on “PID Control” on Amazon

Common approaches:

Factory defaults —
Fiddle until it works —
Model-based approaches —
Automatic tuning —
Experimental tuning —

Very common practice!

Can be effective if not very complex (and
stable)

Good initial settings for delicate, unstable
systems

Effective in specific settings

Structured, simple and effective

The most common form of experimental tuning: Ziegler-Nichols

Note a lot of intuition why this works... primarily based on experience

36



Ziegler-Nichols First Method: Stable Systems

u(t) y(t)
—> System [——
(1) Step input (2) Analyze response
1t i
0.8 ] 0.8
o 06f
509 2 o4
3 g
Zoa4r 3 o2
0
0.2t
0.2t
0 ] 0.4t
i 0 4 8
-1 05 0 05 1 .
Time (sec) Time (sec)
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Ziegler-Nichols First Method: Stable Systems

1t «—Slope = a
0.8- ]
— 06f 1 Type | Kp T; T,
< 04 b o
g 02 <~ Point of maximum slope al
6 0 0o
071 Pl 0.9 1 3.3L
02N 1 PID | 12 | 21 | 05L
04
0 2 4 6 8
Time (sec)
u(t) = er(t)
1 st
u(t) = Kp (e(t) + 7/ 6(7‘)d7‘>
T /o
u(t) = Kp (e(t) + - /t e(r)dr + a9 (1)
B " T’L 0 d dt
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Example - Balloon Velocity Control

Equations of motion:

5T+ 16T = 6¢
T1
ToU + v = adT

0T = deviation of the hot-air temperature from
the equilibrium temperature where buoy-
ant force equals weight
v = vertical velocity of the balloon
dq = deviation in the burner heating rate from
the equilibrium rate

Balloon parameters:

71 =250 sec T2 =25sec a=0.3 m/(sec:°C)

Spirit of Freedom

39



Balloon - Step Response

Tuning procedure: Turn the burner on full and measure vertical velocity.

Velocity (m/s)

60

50

40

30

20

10

0.25 T T T T T

)
o Qo o
[ (4] N

Derivative of step response

o
=)
3]

-1
GO

50

100 150 200
Time (sec)

Step response

250

300 0 50 100 150 200 250 300
Time (sec)

Derivative (acceleration)
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Balloon - Zieger-Nichols Parameters

60
s0l a=0.2323
40¢
\\E, 30r
8 20
2
10p
o /L =16
-10 : : : : .
0 50 100 150 200 250 300
Time (sec)
Type KP Ti Td
1
P | 22 =027
Pl | 92 =024 | 3.3L =53.03
PID | £2=0.32 | 2L =3214 | 0.5L =8.03
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Balloon - Closed-Loop Reponse

1.6

Pl

1.4 PID

/AT

1.2

—_

Velocity (m/s)
o o
o ™

o
N

0.2

0 200 400 600 800
Time (sec)

Zieger-Nichols tuning is often quite aggressive.
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Zieger-Nichols Second Method - Unstable Systems

Why two methods? Can't apply a ‘step’ to an unstable system!

Solution: Stabilize the system with proportional controller first, and then tune

Ye

ﬁ

+

b

/

s

S\

Kpe —>  System 4
Type Kp T; Ta
P 0.5Kpc
Pl 0.45K,. | 0.83T.
PID 0.6 Kpc 0.57. | 0.125T,

Parameters:

= Kpc: Gain at which the
system becomes unstable

= T.: Period of oscillation

43



Example - Balloon Altitude Control

Equations of motion:
. 1
0T + — 6T = dq
T1
ToZ + 2 = adT

z = Altitude of balloon

This is an unstable system.

Spirit of Freedom

44



Example - Balloon Altitude Control

0.5
0.4+
0.3
0.21
0.11

0 T~

-0.14

Altitude (m)

0 500 1000 1500 2000
Time (sec)

Kp=1x10"%
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Example - Balloon Altitude Control

10+

QVQVA\//\\/A\]

Altitude (m)
o

|
a1

|
[y
o

_15 T T T 1
0 500 1000 1500 2000
Time (sec)

Kp=10x10"%
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Example - Balloon Altitude Control

10

/\ I ]
T v

2
::
-

|
[¢)]
T

Altitude (m)

=10

- 5O 500 1000 1500 2000

Time (sec)

Kpe =6x 1074
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Balloon Altitude Control - Closed-Loop Response

20

éﬁ
>
N

~

P

>

D

D

<>

(5

E
g
E AR
2
5
O 1 1 1 1
0 2000 4000 6000 8000 10000

Time (sec)
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Zieger-Nichols Tuning - Summary

Simple method to determine reasonable PID tuning coefficients

= Method 1: Estimate delay and time constant from step response (stable systems)

= Method 2: Estimate gain at which the system becomes unstable, and the
frequency of oscillation (unstable systems)

= Limited to unstable systems that can be stabilized with a proportional controller
Limitations

= Very simple, but also somewhat limited

= Based on information during the first portion of the step response - many systems
are fast enough for more information to be available

= Fairly aggressive - normally good idea to reduce gains

47



Alternative Tuning Methods




Idea: Use More Information

Fit a parameterized curve to the step response:

P K- =K(1—e T
()= s pl) = K(1 - 'T)
e T S - —K
1.5
e —— K1Y
14 |
|
I
0.5 |
|
|
0 | T I T T T T T
5 10 15 20 25 30
| | Time (sec)
T T
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Choose a “Good” Set of Parameters

“Good" parameters for this Surrogate Model:

0.157 + 0.35T

K, = -2 T 72v
P Kt

0.4671 + 0.02T

K= — 1=
K2

Idea: These gains give the same response for all surrogate model parameters

For the control structure:
Ki
C(S) = Kp + ?
Note:

= Many other parameter values possible

= Several other surrogate models proposed

(Ziegler-Nichols parameters for same model: K, = 0.9T/K7, K; = 0.5T/K7?)

49



Example: Balloon Velocity Control

Equations of motion:
5T + 16T = 5¢
T1
20 + v = adT
Compute transfer function:

(s + i) 0T = dq (s + 1)v = adT
T1

= a 5q = . 5
T (res+1)(s+1/71) 4= T2s2 + (1+7m2/m1)s+ 1/ 7

Balloon parameters:

71 = 250 sec To = 25 sec a = 0.3 m/(sec-°C)

To Matlab!

50



Model-Matching via PID




Model-matching

R(s) —+O—= K(s) —+ G(s) - Y(s)

= The closed-loop system is a transfer function 7 (s) parameterized by K (s)

= Can we choose K (s) to make the closed-loop system match a desired behaviour?

51



Model-matching

R(s) —+O—= K(s) —+ G(s) - Y(s)

51



Model-matching

R(s) —+O—= K(s) —+ G(s) - Y(s)

() KGE)
) 11 K(GE) @

T
= KO = G- 1)

We can set K (s) to give us the behaviour 7(s).”

“There are a lot of limitations to this in general, which we will discuss later.
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Matching a First-Order Response

Suppose we want to match the system

1
Tls) = Tms+ 1

1,
@ 0.81
>.
s 0.6
j=3
8 0.4

0.21
O T T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

Step response of first-order system with time-constant 7,,, = 0.1

= Doesn’t oscillate = Gain of one
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Controlling a First-Order System

Suppose that the system we're trying to control is

A system that moves when you ‘push’ it and:

= Does not oscillate

= Stops moving after some amount of time

Compute the controller:

T(s) et
K — — m
W EEI-TE) T (1)
TS+ 1
Y Tms

(5
(1 =
YTm TS
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Controlling a First-Order System

This is a PI controller!

= We can choose how fast we want the closed-loop system to respond

= Simple ‘tuning’ procedure

54



First-Order System with Integral Action

Suppose we're controlling the system:

A system that moves when you ‘push’ it and:

= Does not oscillate

= Continues moving at a constant speed forever

Compute the controller:

1

T(s) Tms+1
Kls) — _ m
(s) G(s)(1 = T(s)) Cre=y (1 - = .15+1>
- YTm (TS * 1)

This is a PD controller
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Second-Order System

Suppose we're controlling the system:

_ v
YO = T e T D)

A system that moves when you ‘push’ it and:

= Does not oscillate

= Continues moving at a constant speed forever

Compute the controller:

K(s):ﬁ—'_T2 (1+( ! NRNELL: s)

1+ T2)s T1+ T2

This is a PID controller
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Example - Balloon Velocity Control

Equations of motion:

5T+ 16T = 6¢
T1
ToU + v = adT

0T = deviation of the hot-air temperature from
the equilibrium temperature where buoy-
ant force equals weight
v = vertical velocity of the balloon
dq = deviation in the burner heating rate from
the equilibrium rate

Balloon parameters:

71 =250 sec T2 =25sec a=0.3 m/(sec:°C)

Spirit of Freedom
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Example - Balloon Velocity Control

Equations of motion:
. 1
0T + — 46T = dq
T1
ToU + v = adT

Take Laplace transform:

oT(s) (s+ Til) =6Q(s) L Vi) _ .
VEms+ 1) =air(y) 0O et hmey
Goal:

1

Te) =551

where 7, = 10s.
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Example - Balloon Velocity Control

T1 + T2 1 T1T2
K = 1
(s) ( + (it 7)s + pmp s)

Balloon parameters:
71 = 250 sec T2 = 25 sec a=0.3 m/(sec-°C)
Desired system parameters:
Tm = 10

Resulting PID controller:

K(s) 275 <1+ 1 +6250>

T 0310 275s | 275 °

Kp =92 T, =3 Tq = 2083
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Example - Balloon Velocity Control

Open-loop behaviour

Velocity
N A OO
o O O O

o

0 200 400 600
Time (s)

Closed-loop behaviour

800

1000

0 200 400 600
Time (s)

800

1000



Summary - Model Matching

The key idea:
= PID controller can make up to second order system behave as desired

= Many limitations on this statement:

= Actuator limitations (speed, power, etc)
= Physical constraints - may damage system if it's moved too fast, etc

= Many, many physical systems are approximately second order

= Newton's law
= Higher-order dynamics can often be ignored
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Second Order Models




What are ‘Good’ Models?

Second-order systems are extremely common
(e.g., mass/spring/damper + Newton's law)

B(t) + 2Cwnd(t) + wiz(t) = whu(t)

= (. Damping ratio
= wy: Natural frequency
The transfer function for this system is:

X(8) iy wh
U(s) G(s) = 52 4+ 2Cwn s + w3

What does the response of this system look like as a function of ¢ and w,,?
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Second Order Systems

X(s) _ _ wh
O(s) ~ 0=

82 + 2Cwn s + w2
where we assume that w, > 0 and ¢ > 0.

Response to a unit step input U(s) = <

2
w;
X(s) = A U/(:
(5) 82 4+ 2Cwn s + w2 (5)
_ wi
T (82 4 2Cwns + w2)
Note that the system has no steady-state offset for all ¢, w:

2
lim sX (s) = lim s

Wy
s—0

50 5(8% 4 2Cwns + w3)

2
=lim =2 =1
s—0 OJ;,
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Step Response

The roots of the characteristic polynomial s* + 2(w, s + w2 are:

p=wn(—CE£V(*—1)

Three cases depending on damping ratio (:

1. ¢ > 1 Overdamped
2. ¢ <1 Underdamped
3. ¢ =1 Critically damped

64



Case One: Overdamped

When ¢ > 1 we call the system overdamped

The system has two real, distinct poles p1 and p2
pr=wn(=C+ V(¢ —1) p2 =wn(—C— V(¢ —1)

The partial-fraction expansion is:

2
Wn, ai a2 1

X = fr —
(s) $(s% 4+ 2Cwns + w32) s —p1 + s — p2 + s

The inverse Laplace transform is:
z(t) = areP’ + age”?’ + 1

Note that both p1 and ps are negative, since ( > 1. Therefore both exponential terms
decay.
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Case One: Overdamped

Step Response

Lo e —

0.8+ —

0.6+

Amplitude

0.4+

0.24 /)

O T T T T 1
0 0.5 1 15 2 2.5

Larger values of ¢ have a slower response.
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Case Two: Critically Damped

Assume ¢ = 1.
One repeated pole:

pr=p2=s=wn(—(ExV(-1)=wn

The partial-fraction expansion is:

wi —1 —Wn 1
p— + —

X(s) = s(s+wn)?  s+wn + (s+wn)? s

The inverse Laplace transform is:

—wnt —wnt
—e “nt —wpte “mt 41

Since wy, > 0, the exponential terms will always go to zero for all w,,.
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Case Two: Critically Damped

Step Response

1+
0.8+

061 |

Amplitude

0.2

0 T T T T T T T 1
0 1 2 3 4 5 6 7 8

Larger values of w,, have a faster response
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Case Three: Underdamped

Assume 0 < ¢ <1

The poles are complex:
p=wn(—CEjv1-C?)
The inverse Laplace transform from the table is*

z(t)=1- \/1%7@674“’” sin (wn\/ 1—C2t+ 9)

where § = cos™! ¢

*Or you can derive from the frequency-shift property, and knowing the transform of the sine function.
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Case Three: Underdamped

_ 1 —Cwnt .
z(t) —1—\/17_7@6 sin (wn\/1—§2t+9>

= The signal oscillates, but decays to one

= The frequency of oscillation is the damped frequency wq := wn/1 — ¢?

o

= The signal decays at an exponential rate of ¢~ 7%, where 0 = Cw,,
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Visualization: The Pole-Zero Diagram

Pole location determines the behaviour of
4 Im(s) the system

6= sinflf = Magnitude of the real component:
\ decay rate

/ = Larger: faster decay

= Magnitude of the complex component:
\ frequency of oscillation

= Larger: Faster oscillation
= Magnitude of the pole: natural
frequency

I \/ Re(s) = Angle of the pole: sin™! ¢
I

What are good choices for pole locations?

|<70'—> (Dd
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To Matlab! pzLocations

= Impact of wy
= Impact of o

= Impact of ¢
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Characterization of Second Order Systems

0.1

Peak time 7},. Time to get to the maximum value.

s ™

T =~ =
g wny/1—(¢% wa

e.g., constraint: T, < 1.5 & wq > 7
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Characterization of Second Order Systems

09 ————— / wlf***}*{*****T**

0.1

Percent overshoot P.O..

P.O.:= M, x 100% = 100e” ™/ V1=¢*

In(Mp)

VIn(Mp)24m2 =045

e.g., constraint M, < 20% < ¢ > —
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Characterization of Second Order Systems

09 ————— / wlf***}*{*****T**

0.1

Settling time Ts. Time to settle to within § percent of the steady-state value. e.g., if
6 =2%
—logd 4 4

Cwn _CTn_O'

T, =

e.g., constraint: Ts <4 & o0 > % =1
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Characterization of Second Order Systems

09 ————— / wlf***}*{*****T**

0.1

Rise time 7). Time to get to 90% of final value from 10%
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Second-Order Models: Summary

2

= (: Damping ratio

= w,: Natural frequency

Many systems can be described with such a model.
If your system is higher order, the general behaviour can often be described by the

dominant poles (the most unstable ones - those closest to the imaginary axis)
Common performance parameters can be set by appropriate selection of w, and ¢

v



Second-Order Models: Summary

2

= (: Damping ratio

= w,: Natural frequency

= Many systems can be described with such a model.
= If your system is higher order, the general behaviour can often be described by the
dominant poles (the most unstable ones - those closest to the imaginary axis)

= Common performance parameters can be set by appropriate selection of w, and (.
How do we choose the PID weights so that we can meet specific criteria?

= Ziegler-Nichols tuning 4+ manual adjustments (root locus)

= Model-matching
= Methods in later lectures (generally requires higher-order controllers)
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Example




Suppose that we have a system which takes a force, and outputs a position:

G(s) = V(s) 21.53
T U(s) st +1.833s3 4 70.28s2 + 69.445

Control the position of this system using a PD controller such that:

= Over shoot is less than Mp = 40%
= Settling time T is below 10s

= Peak-time T}, is below 4s

Note: The transfer function to velocity is

G'(s) = 21.53
T 53 4 1.833s2 4+ 70.28s + 69.44

There is already an integrator here, so we're using a PD controller.
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Method 1: Root-Locus Design

Goal: Choose K, so that our closed-loop poles are in the right place.
Idea: Plot the poles of the closed-loop system as a function of the gain K,

Vi) —O= U ke O 6 - ¥(s)

The closed-loop system is:
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Root-Locus Design

Our controller is:
K(s) = Kp(1 + Tys)

Suppose we've chosen T; = 0.01, and we're looking for a good K,

Our closed-loop poles are given by the roots of the characteristic equation:

B(s)D(s) + A(s)C(s) =
s* 4 1.833s% + 70.285% + 69.445 + K,21.53(1 + 0.01s) := f(s)

We can plot how the four poles of the closed-loop system move in response to changes
in Kp. This is the root-locus diagram.

To Matlab! sol_rlocus.m

80



Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System

0.3+

0.2+

0.1+

21.53
53 +1.833s2 + 70.28s + 69.44

G'(s) =

System is complex, but there is clearly a dominant mode
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Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System

034 T T T T S s

0.2+

0.1+

0

0 1 2 3 4 5 6 7 8 9

Much simpler system that captures the main properties

0.31

~ /
s—&—lNG(S)

P(s) =

Very common to neglect the ‘higher order dynamics’
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Target System

Compute a second order system that satisfies the specified conditions:

= Over shoot is less than Mp = 40%
= Settling time 75 is below 10s
= Peak-time T}, is below 4s

wn = 1.53 zeta = 0.52
1.44

1.24

0.8

0.6

0.4

0.2

¢ =~0.52 wp, &~ 1.53
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PD Control Structure

+ - E(s) Uls) o3 (VO[T
K > : > = > Y
Ye(s) — _ i s+1 S Q)
Tq
Closed-loop transfer function:
1 0.31
Y(s) = s le(E(s) — TysY (s)) E(s) = R(s) —Y(s)
Y (s) 0.31K,

R(s) 82+ (14+0.31K,Ts)s + 0.31K,

Two parameters to choose, and two parameters to set

.. we can choose any response we like!
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PD Control Structure

Y(s) 0.31K,

R(s) ~ s24+ (14 0.31K,T4)s +0.31K,
2

= m Desired response

where ¢ ~ 0.52, w, ~ 1.53

wy 2wn —1

Kp = =7.55 Ta =

o
w
—
I
w
—
=
v

84



Pole Placement Result

1.5+

0.5+

O T T T T 1
0 2 4 6 8 10

Closed-loop response of simplified system
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Pole Placement Result

1.5+

0.5+

O T T T T 1
0 2 4 6 8 10

Real closed-loop system with controller

85



Anti-Windup




Input Constraints

All real systems have input constraints

All the controllers you've seen assume that they do not

This is a problem!

Consider the simple system:

100
s+ 50

1
Ti S

G(s) =

with a Pl controller

K(s)=Kp (1+

with K, = 3.5 and T} = 0.01.
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Example :

Output

Impact of Constraints

Input
o

10

87



Example : Impact of Constraints

Output

Input
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Example : Impact of Constraints

Output

Input
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Example : Impact of Constraints

Output

Input
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Saturation

No matter what we do, the input will satisfy the condition called saturation:®

Umax  if U(t) > Umax
u(t) = Su(t) if u(t) € [Umin, Umax]

Umin if U(t) < Umin

k
N u
+ P u
u 1 u
7 O—> J ﬁ > rfm . > > Plant Oy
el s + | Unax U,

Copyright ©2015 Pearson Education, All Rights Reserved

5We've written the saturation here as a symmetric term. It is also possible to have asymmetric saturation.
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Anti-Windup

Preventing the integrator from growing or ‘winding up’ is called anti-windup

Idea: Detect when saturation is active, and turn off the integrator

P kp
u
+ Winin I
e O—e L' I . > O U
N | Unax Ue
K(l

= Only impacts the system when constraints are active
= Relatively simple to tune

= Can be implemented in continuous-time (traditional reason)
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Example : Impact of Constraints

Output
o

Input

|
(¢}
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PID - Summary

PID controllers are extremely useful:

= Used in the vast majority of simple systems

= Often the ‘lowest-level’ of control. More complex control built on top

A great deal of good literature available on tuning commercial PID controllers

Proportional = Sets the 'aggressiveness’ of your system
Integral = Added to ensure zero steady-state offset

Derivative = Increase the damping of the system - improve stability

Impact of PID terms:

PID Gain Percent Overshoot  Settling Time Steady-State Error
Increasing Kp  Increases Minimal impact  Decreases
Increasing K;  Increases Increases Zero steady-state error

Increasing K4  Decreases Decreases No impact
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