
Control Systems I
Proportional, Integral, Derivative Controllers

Colin Jones

Laboratoire d’Automatique

1



Recall: The Control Loop

r(t) Controller

w(t)

System y(t)

v(t)

+ e(t) u(t)

+

+

+

−

+

• Reference r(t)

• Error e(t)
• Input u(t)

• Input disturbance w(t)

• Measurement noise v(t)

• Ouput y(t)

Goal: Make y(t) = r(t), no matter what w(t), or v(t) are

2



This Week: PID Control

PID - Proportional, Integral, Derivative Control

e(t) Kp u(t)

Td
de

dt
(t)

1

Ti

∫ t

0

e(τ)dτ

+ +
+

• Most common controller
• Used in billions of devices
• Very simple and effective

Goal: Drive error to zero and keep it there
P: u(t) = KP e(t)

I: u(t) =

∫ t

0

KIe(τ)dτ

D: u(t) = KD
de(t)

dt


Zero if and only if error is zero and
not changing

3



Example



DC Motor Speed Control

i(t)

+

�

u(t)

+

�
f

R K � !
Mr (t)

J

�(t)

Electrical dynamics:1

u(t)︸︷︷︸
Voltage

= vemf︸︷︷︸
Back-EMF

+ Ri(t)︸ ︷︷ ︸
Resistance

= KΦω(t) +Ri(t)

Mechanical dynamics:

τ(i)︸︷︷︸
Torque

= KΦi(t) = Jω̇(t)︸ ︷︷ ︸
Inertia

+ fω(t)︸ ︷︷ ︸
Viscous friction

+ Mr(t)︸ ︷︷ ︸
Parasitic torque

1Assuming that the motor inductance is negligible

4



Open-Loop Block Diagram

u(t) 1

R

K�

K�

Mr (t)

1

J

Z
!(t)

!̇(t)

⌧(t)

f

+

�

��+ i(t)

On the board: Simplify

5



Open-Loop Block Diagram

+
�

u(s)

Mr (s)

!(s)
K�

sJR + Rf + (K�)2

R

K�

ω(s) =
KΦ

sJR+Rf + (KΦ2)

(
u(s)− R

KΦ
Mr(s)

)
Response to a step u(s) = 1/s

ω(t) =
KΦ

JR

(
1− e−

Rf+(KΦ)2

JR
t

) Response to a step Mr(s) = 1/s

ω(t) = − 1

J

(
1− e−

Rf+(KΦ)2

JR
t

)
1Comment on why we can drop gain on disturbance.

6



Open-loop System Response

Time (s)

 

 

0 1 2 3 4 5
−0.5

0

0.5
ω(t) in response to step in u(t)
ω(t) in response to step in M

r
(t)

7



Proportional Control



Proportional Control

e(t) Kp u(t) E(s) Kp U(s)

Proportional Control

u(t) = KP e(t) = KP (y(t)− r(t))

Set the system input to be proportional to the error

Intuition: Controller responds strongly to a large error and weakly to a small one

Only design choice: KP

What impact does KP have on the system behaviour?

8



Example: Motor Control

i(t)

+

�

u(t)

+

�
f

R K � !
Mr (t)

J

�(t)
-

+

�c(t)

KP

Recall:

ω̇(t) +
1

J

(
f +

(KΦ)2

R

)
ω(t) =

KΦ

JR

(
u(t)− R

KΦ
Mr(t)

)
Output: ω(t) speed of motor Input: u(t) electrical current
J rotational inertia, R electrical resistance, f viscous friction, Φ inductance

9



Example: Block Diagram

ωc Controller

− R
KΦ

Mr

Motor and
load

ω
+ ωc − ω + +

−

System equation:

ω̇(t) +
1

J

(
f +

(KΦ)2

R

)
ω(t) =

KΦ

JR

(
u(t)− R

KΦ
Mr(t)

)
Controller equation:

u(t) = KP (ωc(t)− ω(t))

Intuition:

• Speed slower than desired (ω < ωc): Increase current
• Speed faster than desired (ω > ωc): Decrease current

10



Proportional Motor Speed Control

With the controller in place, the system equation is:2

ω̇(t) +
1

J

(
f +

(KΦ)2

R

)
︸ ︷︷ ︸

α

ω(t) =
KΦ

JR︸︷︷︸
β

Kp(ωc(t)− ω(t))

ω̇(t) + αω(t) = βKp(ωc(t)− ω(t))

Re-arranging gives:

ω̇(t) + (α+ βKP )ω(t) = βKpωc(t)

This is a standard first-order system.

2Note that we’ve assumed that the disturbance is zero here Mr(t) = 0.

11



Recall: Behaviour of First-Order Systems

ẋ(t) + τx(t) = γv(t)

1. Take the Laplace transform:

sX(s) + τX(s) = γV (s)

X(s)(s+ τ) = γV (s)

2. Suppose the v(t) = vc for t > 0 for some constant vc, then V (s) = vc
s

.

X(s) =
γ

s(s+ τ)
vc

3. Take the inverse transform to compute the time-domain response

x(t) =
γ

τ
vcL−1

{
1

s
− 1

τ + s

}
=

γ

τ
vc(1− e−τt)

12



Response of Motor Under Proportional Control

ω(t) =
βKP

α+ βKP
ω̄c(1− e−(α+βKP )t)

Take the constants to be: J = f = K = Φ = R = 1.

α =
1

J

(
f +

(KΦ)2

R

)
= 2 β =

KΦ

JR
= 1

Suppose at time t = 0 a speed change is requested ⇒ ω̄c = 1.

The time response is now:

ω(t) =
KP ω̄c

2 +KP

(
1− e−(2+KP )t

)
How should we choose KP ?

13



Response of Motor Under Proportional Control

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

KP = 1, τ = 0.3

Time (s)

Sp
ee

d
ω
(t
)

14



Response of Motor Under Proportional Control

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

KP = 1, τ = 0.3

KP = 10, τ = 0.08

Time (s)

Sp
ee

d
ω
(t
)

14



Response of Motor Under Proportional Control

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

KP = 1, τ = 0.3

KP = 10, τ = 0.08
KP = 100, τ = 0.01

Time (s)

Sp
ee

d
ω
(t
)

14



Response of Motor Under Proportional Control

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

KP = 1, τ = 0.3

KP = 10, τ = 0.08
KP = 100, τ = 0.01

KP = −1, τ = 1

KP = −3, τ = −1

Time (s)

Sp
ee

d
ω
(t
)

14



Impact of Proportional Gain

• Stability
• An incorrect gain can cause the system to be unstable

• Transient response
• A larger gain will normally cause the system to react more quickly
• Larger gain → larger input. However, you do not have unlimited input authority!

• Steady-state offset
• Many systems will have a steady-state offset with only proportional control

lim
t→∞

ω(t) = lim
t→∞

KP ω̄c

2 +KP
(1− e−(2+KP )t) =

KP

2 +KP
ω̄c ̸= ω̄c

Another component needed to ensure steady-state error is zero → Integrator

15



Why Not Choose the Maximum KP ?

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

KP = 1, τ = 0.3

KP = 10, τ = 0.08

KP = 100, τ = 0.01

Time (s)

Sp
ee

d
ω
(t
)

• Faster response requires a faster actuator
• Need more input authority (‘stronger’ actuator)
• You may just be amplifying noise (more later)

16



Proportional Integral Control



Proportional Integral (PI) Control

e(t)

1
Ti

∫ t

0
e(τ)dτ

Kp u(t)
+

+
E(s)

1
sTi

Kp U(s)
+

+

Proportional Integral Control

u(t) = KP

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
= KP e(t) +Ki

∫ t

0

e(τ)dτ)

where Ki :=
KP
Ti

U(s) = Kp

(
1 +

1

Tis

)
E(s) =

(
KP +

Ki

s

)
E(s)

• Input is proportional to the integral of the error
• Intuition: Control input continues to grow until the error goes to zero

17



Final Value Theorem

How to compute the steady-state value of a signal?
Final Value Theorem

If and only if the linear time invariant system producing x(t) is stable, then

lim
t→∞

x(t) = lim
s→0

sX(s)

The system must be stable!

• If it’s not, then the FVT will give you the wrong answer (it won’t predict an
unbounded, or oscillatory response)

18



Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

L
(

dx(t)
dt

)
=

∫ ∞

0

dx(t)
dt e−stdt

= x(t)e−st
∣∣∣∞
0

− (−s)

∫ ∞

0

x(t)e−stdt Integration by parts

= lim
t→∞

x(t)e−st︸ ︷︷ ︸
=0 x(t) is stable

−x(0) + sL (x(t))

= −x(0) + sX(s)

19



Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

L
(

dx(t)
dt

)
=

∫ ∞

0

dx(t)
dt e−stdt

= x(t)e−st
∣∣∣∞
0

− (−s)

∫ ∞

0

x(t)e−stdt Integration by parts

= lim
t→∞

x(t)e−st︸ ︷︷ ︸
=0 x(t) is stable

−x(0) + sL (x(t))

= −x(0) + sX(s)

19



Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

L
(

dx(t)
dt

)
=

∫ ∞

0

dx(t)
dt e−stdt

= x(t)e−st
∣∣∣∞
0

− (−s)

∫ ∞

0

x(t)e−stdt Integration by parts

= lim
t→∞

x(t)e−st︸ ︷︷ ︸
=0 x(t) is stable

−x(0) + sL (x(t))

= −x(0) + sX(s)

19



Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

L
(

dx(t)
dt

)
=

∫ ∞

0

dx(t)
dt e−stdt

= x(t)e−st
∣∣∣∞
0

− (−s)

∫ ∞

0

x(t)e−stdt Integration by parts

= lim
t→∞

x(t)e−st︸ ︷︷ ︸
=0 x(t) is stable

−x(0) + sL (x(t))

= −x(0) + sX(s)

19



Final Value Theorem - Proof Sketch

Second: What happens when we take s → 0?

lim
s→0

∫ ∞

0

dx(t)
dt e−stdt = lim

s→0
−x(0) + sX(s)

∫ ∞

0

dx(t)
dt dt = −x(0) + lim

s→0
sX(s)

lim
t→∞

x(t)− x(0) = −x(0) + lim
s→0

sX(s)

lim
t→∞

x(t) = lim
s→0

sX(s)

There is a similar relation between the limit as t goes to zero, and s goes to infinity.

20



Final Value Theorem - Proof Sketch

Second: What happens when we take s → 0?

lim
s→0

∫ ∞

0

dx(t)
dt e−stdt = lim

s→0
−x(0) + sX(s)

∫ ∞

0

dx(t)
dt dt = −x(0) + lim

s→0
sX(s)

lim
t→∞

x(t)− x(0) = −x(0) + lim
s→0

sX(s)

lim
t→∞

x(t) = lim
s→0

sX(s)

There is a similar relation between the limit as t goes to zero, and s goes to infinity.

20



Final Value Theorem - Proof Sketch

Second: What happens when we take s → 0?

lim
s→0

∫ ∞

0

dx(t)
dt e−stdt = lim

s→0
−x(0) + sX(s)

∫ ∞

0

dx(t)
dt dt = −x(0) + lim

s→0
sX(s)

lim
t→∞

x(t)− x(0) = −x(0) + lim
s→0

sX(s)

lim
t→∞

x(t) = lim
s→0

sX(s)

There is a similar relation between the limit as t goes to zero, and s goes to infinity.

20



Final Value Theorem - Proof Sketch

Second: What happens when we take s → 0?

lim
s→0

∫ ∞

0

dx(t)
dt e−stdt = lim

s→0
−x(0) + sX(s)

∫ ∞

0

dx(t)
dt dt = −x(0) + lim

s→0
sX(s)

lim
t→∞

x(t)− x(0) = −x(0) + lim
s→0

sX(s)

lim
t→∞

x(t) = lim
s→0

sX(s)

There is a similar relation between the limit as t goes to zero, and s goes to infinity.

20



Example: Motor Control

ω̇(t) + αω(t) = βu(t)

Control input: u(t) = KP (e(t) +
1
Ti

∫ t

0
e(τ)dτ) → U(s) = KP (1 +

1
Tis

)E(s)

(s+ α)Ω(s) = βKp

(
1 +

1

Tis

)
(Ωc(s)− Ω(s))

Ω(s) =
βKp(Tis+ 1)

Tis2 + Ti(α+ βKp)s+ βKp
Ωc(s)

Steady-state error in response to a step in the command: Ωc(s) =
ω̄c
s

:

lim
t→∞

w(s) = lim
s→0

sΩ(s)

= lim
s→0

s
βKp(Tis+ 1)

Tis2 + Ti(α+ βKp)s+ βKp

w̄c

s

= w̄c

If the system is stable, then there is no steady-state offset

21



Motor Speed Control

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time (s)

Sp
ee

d 
ω

(t)

Kp = 5, Ti =�

System response to a speed change command ω̄c = 1

• No integrator → system settles at the wrong speed
22



Motor Speed Control

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time (s)

Sp
ee

d 
ω

(t)

Kp = 5, Ti =�

Kp = 5, Ti = 0.2

System response to a speed change command ω̄c = 1

22



Motor Speed Control

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time (s)

Sp
ee

d 
ω

(t)

Kp = 5, Ti =�

Kp = 5, Ti = 0.2

Kp = 5, Ti = 1

System response to a speed change command ω̄c = 1

22



Motor Speed Control

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time (s)

Sp
ee

d 
ω

(t)

Kp = 5, Ti =�

Kp = 5, Ti = 0.2

Kp = 5, Ti = 1

Kp = 5, Ti = 0.01

System response to a speed change command ω̄c = 1

• Tuning the system is now more complex (more later)
22



Rejection of Constant Disturbances

0 1 2 3 4 5 6
0

0.5

1

1.5

Time (s)

Sp
ee

d 
ω

(t)

P-Controller

Constant disturbance "
causes offset


PI Controller

Constant disturbance rejected


• Disturbance impacts the system from t = 2 to t = 4

• The integrator rejects the disturbance and keep the system at the setpoint
23



Interactive Simulations

External example 1.29

24



PI Control - Summary

e(t)

1
Ti

∫ t

0
e(τ)dτ

Kp u(t)
+

+
E(s)

1
sTi

Kp U(s)
+

+

• Steady-state offset
• Integrator ensures zero offset (more details later)

• Stability
• Adding an integrator can easily destabilize the system

• Transient response
• Tuning is now more complex (more details later)

25



Proportional Derivative Control



Proportional Derivative (PD) Control

e(t)

Td
de
dt
(t)

Kp u(t)
+

+
E(s)

Tds

Kp U(s)
+

+

Proportional Derivative Control

u(t) = KP

(
e(t) + Td

de
dt (t)

)
= KP e(t) +Kd

de
dt (t)

where Kd := KPTd

U(s) = KP (1 + Tds)E(s) = (KP +Kds)E(s)

• Input is proportional to the derivative of the error
• Intuition: React to fast disturbances more quickly than slow ones

26



PD Control : An Interpretation

Consider the value of the error Td seconds into the future:

e(t+ Td) ≈ e(t) +
de
dt (t)Td

−0.5 0 0.5 1
−0.5

0

0.5

1

1.5

Time (s)

e(t)

e(0)

e(0) +
Ke
Kt e(0)Td

e(Td)

One interpretation: Feedback on an estimate of the future error

27



Motor Control Example

We now want to control the position θ of the motor:

θ̈(t) + αθ̇(t) = βu(t) u(t) = KP

(
e(t) + Td

de
dt (t)

)
= KP

(
θc(t)− θ(t)− Td

dθ
dt (t)

)
3

Take the Laplace transform:

(s2 + αs)Θ(s) = βKPΘc(s)− βKp(1 + Tds)Θ(s)

Θ(s) =
βKP

s2 + (α+ βKPTd)s+ βKP
Θc(s)

The gain Td impacts the damping of the closed-loop system. (More later)

3Note that the derivative of θc(t) is assumed to be zero here

28



Response of Closed-Loop System to PD Control

0 1 2 3 4 5 60

0.5

1

1.5

Time (s)

Po
si

tio
n 
θ(

t)
KP = 20, Td = 0

29



Response of Closed-Loop System to PD Control

0 1 2 3 4 5 60

0.5

1

1.5

Time (s)

Po
si

tio
n 
θ(

t)
KP = 20, Td = 0

KP = 20, Td = 0.1

29



Response of Closed-Loop System to PD Control

0 1 2 3 4 5 60

0.5

1

1.5

Time (s)

Po
si

tio
n 
θ(

t)
KP = 20, Td = 0

KP = 20, Td = 0.1

KP = 20, Td = 1

29



Implementing Derivative Action

Td
de
dt (t) TdsE(s) ≈ Tds

Td
N
s+ 1

E(s)

• Not a proper expression, and cannot be implemented in a circuit
• Digital approximation: u(t) ≈ e(t)−e(t−∆)

∆

Error signal

0 2 4 6 8 10

−2

−1.5

−1

−0.5

0

Time (s)

e(
t)

Derivative

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

de
/d

t (
t)

30



Implementing Derivative Action

Td
de
dt (t) TdsE(s) ≈ Tds

Td
N
s+ 1

E(s)

• Not a proper expression, and cannot be implemented in a circuit
• Digital approximation: u(t) ≈ e(t)−e(t−∆)

∆

Sampled error signal

0 2 4 6 8 10

−2

−1.5

−1

−0.5

0

Time (s)

e(
t)

Approximate Derivative

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

de
/d

t (
t)

30



Implementing Derivative Action

Td
de
dt (t) TdsE(s) ≈ Tds

Td
N
s+ 1

E(s)

• Not a proper expression, and cannot be implemented in a circuit
• Digital approximation: u(t) ≈ e(t)−e(t−∆)

∆

Sampled error signal + Noise

0 2 4 6 8 10

−2

−1.5

−1

−0.5

0

Time (s)

e(
t)

Approximate Derivative

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

de
/d

t (
t)

30



Implementing Derivative Action

Td
de
dt (t) TdsE(s) ≈ Tds

Td
N
s+ 1

E(s)

• Not a proper expression, and cannot be implemented in a circuit
• Digital approximation: u(t) ≈ e(t)−e(t−∆)

∆

Sampled error signal + Noise

0 2 4 6 8 10

−2

−1.5

−1

−0.5

0

Time (s)

e(
t)

Filtered Derivative

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

de
/d

t (
t)

30



PD Control - Summary

e(t)

Td
de
dt
(t)

Kp u(t)
+

+
E(s)

Tds

Kp U(s)
+

+

• Stability
• Can add extra damping to the system.
• Intuition: Acts to reduce velocity

• Transient response
• Tuning is now more complex (more details later)

• Robustness
• Operates on high-frequencies more than lower-frequencies
• Will amplify high-frequency noise acting on the system
⇒ Derivative controllers are always combined with low-pass filters

31



Proportional Integral Derivative
Control



Proportional Integral Derivative (PID) Control

e(t)

Td
de
dt

(t)

1
Ti

∫ t
0 e(τ)dτ

KP u(t) E(s)

Tds

1
Tis

KP U(s)

Proportional Integral Derivative (PID) Control

u(t) = KP

(
e(t) + Td

de
dt (t) +

1

Ti

∫ t

0

e(τ)dτ

)
= KP e(t) +Kd

de
dt (t) +Ki

∫ t

0

e(τ)dτ

Or in the Laplace domain:

U(s) = KP

(
1 + Tds+

1

Tis

)
E(s) =

(
KP +Kds+Ki

1

s

)
E(s)

32



Many Equivalent Formulations

Parallel Formulation

KP

+

+

U(s)E(s) +

Kds

Ki
1

s

U(s) = KP +Kds+Ki
1

s

Mixed Formulation

KP

+

+

1

sTi

Tds

U(s)E(s)

U(s) = KP

(
1 + Tds+

1

Tis

)

Series Formulations

U(s)
KP

1

sTi
Tds

+

+

+

+

E(s)

U(s) = KP

(
1 +

1

Tis

)
(1 + Tds)

33



Balloon Altitude Control - Closed-Loop Response

0 2000 4000 6000 8000 10000
0

5

10

15

20
Al

tit
ud

e 
(m

)

Time (sec)

P


PI


PID


34



PID Control

Proportional • Sets the ‘aggressiveness’ of your system.
• Higher generally means that the system will respond more

strongly to disturbances

Integral • Added to ensure zero steady-state offset
• Not necessary if your system already has ‘integral action’
• Danger: Can easily de-stabilize the system

Derivative • Increase the damping of the system - improve stability
• Can amplify high-frequency noise
• Less often used

35



Ziegler-Nichols Tuning



Tuning: How to choose the parameters KP , Ti and Td??

⇒ 1, 637 books on “PID Control” on Amazon

Common approaches:

Factory defaults → Very common practice!
Fiddle until it works → Can be effective if not very complex (and

stable)
Model-based approaches → Good initial settings for delicate, unstable

systems
Automatic tuning → Effective in specific settings
Experimental tuning → Structured, simple and effective

The most common form of experimental tuning: Ziegler-Nichols

Note a lot of intuition why this works... primarily based on experience

36



Ziegler-Nichols First Method: Stable Systems

System

u(t) y(t)

(1) Step input

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Time (sec)

In
pu

t u
(t

)

(2) Analyze response

0 2 4 6 8

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

O
ut

pu
t y

(t
)

37



Ziegler-Nichols First Method: Stable Systems

0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

O
ut

pu
t y

(t)

Point of maximum slope


�aL

L

:SVWL = a

Type KP Ti Td

P 1
aL

PI 0.9
aL

3.3L

PID 1.2
aL

2L 0.5L

u(t) = KP e(t)

u(t) = KP

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
u(t) = KP

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de
dt (t)

)

38



Example - Balloon Velocity Control

Spirit of Freedom

Equations of motion:

δṪ +
1

τ1
δT = δq

τ2v̇ + v = aδT

δT = deviation of the hot-air temperature from
the equilibrium temperature where buoy-
ant force equals weight

v = vertical velocity of the balloon
δq = deviation in the burner heating rate from

the equilibrium rate

Balloon parameters:

τ1 = 250 sec τ2 = 25 sec a = 0.3 m/(sec·◦C)

39



Balloon - Step Response

Tuning procedure: Turn the burner on full and measure vertical velocity.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

Time (sec)

V
el

oc
ity

 (
m

/s
)

Step response

→

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

D
er

iv
at

iv
e 

of
 s

te
p 

re
sp

on
se

Time (sec)

Derivative (acceleration)

40



Balloon - Zieger-Nichols Parameters

0 50 100 150 200 250 300−10

0

10

20

30

40

50

60

Time (sec)

Ve
lo

ci
ty

 (m
/s

)

a = 0.2323

L = 16

Type KP Ti Td

P 1
aL

= 0.27

PI 0.9
aL

= 0.24 3.3L = 53.03

PID 1.2
aL

= 0.32 2L = 32.14 0.5L = 8.03

41



Balloon - Closed-Loop Reponse

0 200 400 600 8000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ve
lo

ci
ty

 (m
/s

)

Time (sec)

P


PI


PID


Zieger-Nichols tuning is often quite aggressive.

42



Zieger-Nichols Second Method - Unstable Systems

Why two methods? Can’t apply a ‘step’ to an unstable system!

Solution: Stabilize the system with proportional controller first, and then tune

System

+

�

yc y(t)
Kpc

Tc

Type KP Ti Td

P 0.5Kpc

PI 0.45Kpc 0.83Tc

PID 0.6Kpc 0.5Tc 0.125Tc

Parameters:
• Kpc: Gain at which the

system becomes unstable
• Tc: Period of oscillation

43



Example - Balloon Altitude Control

Spirit of Freedom

Equations of motion:

δṪ +
1

τ1
δT = δq

τ2z̈ + ż = aδT

z = Altitude of balloon

This is an unstable system.

44



Example - Balloon Altitude Control

Time (sec)

A
lti

tu
de

 (
m

)

0 500 1000 1500 2000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

KP = 1× 10−4

45



Example - Balloon Altitude Control

Time (sec)

A
lti

tu
de

 (
m

)

0 500 1000 1500 2000
−15

−10

−5

0

5

10

KP = 10× 10−4

45



Example - Balloon Altitude Control

0 500 1000 1500 2000
−15

−10

−5

0

5

10

Time (sec)

Al
tit

ud
e 

(m
)

Tc = 500

KPC = 6× 10−4

45



Balloon Altitude Control - Closed-Loop Response

0 2000 4000 6000 8000 10000
0

5

10

15

20
Al

tit
ud

e 
(m

)

Time (sec)

P


PI


PID


46



Zieger-Nichols Tuning - Summary

Simple method to determine reasonable PID tuning coefficients

• Method 1: Estimate delay and time constant from step response (stable systems)
• Method 2: Estimate gain at which the system becomes unstable, and the

frequency of oscillation (unstable systems)
• Limited to unstable systems that can be stabilized with a proportional controller

Limitations

• Very simple, but also somewhat limited
• Based on information during the first portion of the step response - many systems

are fast enough for more information to be available
• Fairly aggressive - normally good idea to reduce gains

47



Alternative Tuning Methods



Idea: Use More Information

Fit a parameterized curve to the step response:

P (s) =
K

sT + 1
e−τs p(t) = K(1− e−

t−τ
T )

Time (sec)
0 5 10 15 20 25 30

0

0.5

1

1.5

2 K

⌧ T

K(1� e�1)

48



Choose a “Good” Set of Parameters

“Good” parameters for this Surrogate Model:

Kp =
0.15τ + 0.35T

Kτ

Ki =
0.46τ + 0.02T

Kτ2

Idea: These gains give the same response for all surrogate model parameters

For the control structure:

C(s) = Kp +
Ki

s

Note:

• Many other parameter values possible
• Several other surrogate models proposed

(Ziegler-Nichols parameters for same model: Kp = 0.9T/Kτ , Ki = 0.5T/Kτ2)

49



Example: Balloon Velocity Control

Equations of motion:

δṪ +
1

τ1
δT = δq

τ2v̇ + v = aδT

Compute transfer function:(
s+

1

τ1

)
δT = δq (τ2s+ 1)v = aδT

v =
a

(τ2s+ 1)(s+ 1/τ1)
δq =

a

τ2s2 + (1 + τ2/τ1)s+ 1/τ1
δq

Balloon parameters:

τ1 = 250 sec τ2 = 25 sec a = 0.3 m/(sec·◦C)

To Matlab!

50



Model-Matching via PID



Model-matching

R(s) K(s) G(s) Y (s)
−

=

R(s) T (s) Y (s)

• The closed-loop system is a transfer function T (s) parameterized by K(s)

• Can we choose K(s) to make the closed-loop system match a desired behaviour?

51



Model-matching

R(s) K(s) G(s) Y (s)
−

=

R(s) T (s) Y (s)

Compute T (s):

E(s) = R(s)− Y (s) Y (s) = G(s)K(s)E(s)

⇒ Y (s)

R(s)
=

K(s)G(s)

1 +K(s)G(s)
= T (s)

51



Model-matching

R(s) K(s) G(s) Y (s)
−

=

R(s) T (s) Y (s)

Y (s)

R(s)
=

K(s)G(s)

1 +K(s)G(s)
= T (s)

⇒ K(s) =
T (s)

G(s)(1− T (s))

We can set K(s) to give us the behaviour T (s).a

aThere are a lot of limitations to this in general, which we will discuss later.

51



Matching a First-Order Response

Suppose we want to match the system

T (s) =
1

τms+ 1

Time (s)

O
ut

pu
t Y

(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Step response of first-order system with time-constant τm = 0.1

• Doesn’t oscillate • Gain of one

52



Controlling a First-Order System

Suppose that the system we’re trying to control is

G(s) =
γ

τs+ 1

A system that moves when you ‘push’ it and:

• Does not oscillate
• Stops moving after some amount of time

Compute the controller:

K(s) =
T (s)

G(s)(1− T (s))
=

1
τms+1

γ
τs+1

(
1− 1

τms+1

)
=

τs+ 1

γτms

=
τ

γτm

(
1 +

1

τs

)

53



Controlling a First-Order System

K(s) =
τ

γτm

(
1 +

1

τs

)
This is a PI controller!

KP =
τ

γτm

TI = τ

• We can choose how fast we want the closed-loop system to respond
• Simple ‘tuning’ procedure

54



First-Order System with Integral Action

Suppose we’re controlling the system:

G(s) =
γ

τs+ 1
· 1
s

A system that moves when you ‘push’ it and:

• Does not oscillate
• Continues moving at a constant speed forever

Compute the controller:

K(s) =
T (s)

G(s)(1− T (s))
=

1
τms+1

γ
s(τs+1)

(
1− 1

τms+1

)
=

1

γτm
(τs+ 1)

This is a PD controller

55



Second-Order System

Suppose we’re controlling the system:

G(s) =
γ

(τ1s+ 1)(τ2s+ 1)

A system that moves when you ‘push’ it and:

• Does not oscillate
• Continues moving at a constant speed forever

Compute the controller:

K(s) =
τ1 + τ2
γτm

(
1 +

1

(τ1 + τ2)s
+

τ1τ2
τ1 + τ2

s

)
This is a PID controller

56



Example - Balloon Velocity Control

Spirit of Freedom

Equations of motion:

δṪ +
1

τ1
δT = δq

τ2v̇ + v = aδT

δT = deviation of the hot-air temperature from
the equilibrium temperature where buoy-
ant force equals weight

v = vertical velocity of the balloon
δq = deviation in the burner heating rate from

the equilibrium rate

Balloon parameters:

τ1 = 250 sec τ2 = 25 sec a = 0.3 m/(sec·◦C)

57



Example - Balloon Velocity Control

Equations of motion:

δṪ +
1

τ1
δT = δq

τ2v̇ + v = aδT

Take Laplace transform:

δT (s)

(
s+

1

τ1

)
= δQ(s)

V (s)(τ2s+ 1) = aδT (s)

 → V (s)

δQ(s)
=

aτ1
(τ1s+ 1)(τ2s+ 1)

Goal:

T (s) =
1

τms+ 1

where τm = 10s.

58



Example - Balloon Velocity Control

K(s) =
τ1 + τ2
γτm

(
1 +

1

(τ1 + τ2)s
+

τ1τ2
τ1 + τ2

s

)

Balloon parameters:

τ1 = 250 sec τ2 = 25 sec a = 0.3 m/(sec·◦C)

Desired system parameters:

τm = 10

Resulting PID controller:

K(s) =
275

0.3 · 10

(
1 +

1

275s
+

6250

275
s

)

KP = 92 Ti = 3 Td = 2083

59



Example - Balloon Velocity Control

Open-loop behaviour

Time (s)

V
el

oc
ity

0 200 400 600 800 1000
0

20
40
60
80

Closed-loop behaviour

Time (s)

V
el

oc
ity

0 200 400 600 800 1000
0

0.5

1

60



Summary - Model Matching

The key idea:

• PID controller can make up to second order system behave as desired

• Many limitations on this statement:
• Actuator limitations (speed, power, etc)
• Physical constraints - may damage system if it’s moved too fast, etc

• Many, many physical systems are approximately second order
• Newton’s law
• Higher-order dynamics can often be ignored

61



Second Order Models



What are ‘Good’ Models?

Second-order systems are extremely common
(e.g., mass/spring/damper + Newton’s law)

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = ω2

nu(t)

• ζ: Damping ratio
• ωn: Natural frequency

The transfer function for this system is:

X(s)

U(s)
= G(s) =

ω2
n

s2 + 2ζωns+ ω2
n

What does the response of this system look like as a function of ζ and ωn?

62



Second Order Systems

X(s)

U(s)
= G(s) =

ω2
n

s2 + 2ζωns+ ω2
n

where we assume that ωn > 0 and ζ > 0.

Response to a unit step input U(s) = 1
s
:

X(s) =
ω2
n

s2 + 2ζωns+ ω2
n

U(s)

=
ω2
n

s(s2 + 2ζωns+ ω2
n)

Note that the system has no steady-state offset for all ζ, ωn:

lim
s→0

sX(s) = lim
s→0

s
ω2
n

s(s2 + 2ζωns+ ω2
n)

= lim
s→0

ω2
n

ω2
n

= 1

63



Step Response

The roots of the characteristic polynomial s2 + 2ζωns+ ω2
n are:

p = ωn(−ζ ±
√

ζ2 − 1)

Three cases depending on damping ratio ζ:

1. ζ > 1 Overdamped
2. ζ < 1 Underdamped
3. ζ = 1 Critically damped

64



Case One: Overdamped

When ζ > 1 we call the system overdamped

The system has two real, distinct poles p1 and p2

p1 = ωn(−ζ +
√

ζ2 − 1) p2 = ωn(−ζ −
√

ζ2 − 1)

The partial-fraction expansion is:

X(s) =
ω2
n

s(s2 + 2ζωns+ ω2
n)

=
a1

s− p1
+

a2

s− p2
+

1

s

The inverse Laplace transform is:

x(t) = a1e
p1t + a2e

p2t + 1

Note that both p1 and p2 are negative, since ζ > 1. Therefore both exponential terms
decay.

65



Case One: Overdamped

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
Step Response

A
m

pl
itu

de

Larger values of ζ have a slower response.

66



Case Two: Critically Damped

Assume ζ = 1.
One repeated pole:

p1 = p2 = s = ωn(−ζ ±
√

ζ2 − 1) = ωn

The partial-fraction expansion is:

X(s) =
ω2
n

s(s+ ωn)2
=

−1

s+ ωn
+

−ωn

(s+ ωn)2
+

1

s

The inverse Laplace transform is:

−e−ωnt − ωnte
−ωnt + 1

Since ωn > 0, the exponential terms will always go to zero for all ωn.

67



Case Two: Critically Damped

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Step Response

A
m

pl
itu

de

Larger values of ωn have a faster response

68



Case Three: Underdamped

Assume 0 ≤ ζ < 1

The poles are complex:

p = ωn(−ζ ± j
√

1− ζ2)

The inverse Laplace transform from the table is4

x(t) = 1− 1√
1− ζ2

e−ζωnt sin
(
ωn

√
1− ζ2t+ θ

)
where θ = cos−1 ζ

4Or you can derive from the frequency-shift property, and knowing the transform of the sine function.

69



Case Three: Underdamped

x(t) = 1− 1√
1− ζ2

e−ζωnt sin
(
ωn

√
1− ζ2t+ θ

)

• The signal oscillates, but decays to one
• The frequency of oscillation is the damped frequency ωd := ωn

√
1− ζ2

• The signal decays at an exponential rate of e−σt, where σ = ζωn

70



Case Three: Underdamped

(b)

0.9

z ! 1

0 2 4 6 8 10 12

1.0

0.8

0.6

0.4

0.2

0.0

"0.2

"0.4

"0.6

"0.8

"1.0

y (t)

vnt

(a)

0 2 4 6 8 10 12

vnt

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

y (t)

z ! 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

z ! 0
0.1
0.2
0.3
0.4
0.5
0.6

z ! 0.7
0.8
0.9
1.0

71



Im(s)

Re(s)

LHP RHP

STABLE UNSTABLE

72



Visualization: The Pole-Zero Diagram

Im(s)

Re(s)

u � sin�1z

vn

vds

Pole location determines the behaviour of
the system

• Magnitude of the real component:
decay rate

• Larger: faster decay
• Magnitude of the complex component:

frequency of oscillation
• Larger: Faster oscillation

• Magnitude of the pole: natural
frequency

• Angle of the pole: sin−1 ζ

What are good choices for pole locations?

73



To Matlab! pzLocations

• Impact of ωd

• Impact of σ
• Impact of ζ

74



Characterization of Second Order Systems

t

Mptp

ts

tr

1
0.9

0.1

�1%

Peak time Tp. Time to get to the maximum value.

Tp =
π

ωn

√
1− ζ2

=
π

ωd

e.g., constraint: Tp ≤ 1.5 ⇔ ωd ≥ π
1.5

75



Characterization of Second Order Systems

t

Mptp

ts

tr

1
0.9

0.1

�1%

Percent overshoot P.O..

P.O. := Mp × 100% = 100e−ζπ/
√

1−ζ2

e.g., constraint Mp < 20% ⇔ ζ ≥ − ln(Mp)√
ln(Mp)2+π2

= 0.45

75



Characterization of Second Order Systems

t

Mptp

ts

tr

1
0.9

0.1

�1%

Settling time Ts. Time to settle to within δ percent of the steady-state value. e.g., if
δ = 2%

Ts =
− log δ

ζωn
=

4

ζωn
=

4

σ

e.g., constraint: Ts ≤ 4 ⇔ σ ≥ 4
Ts

= 1

75



Characterization of Second Order Systems

t

Mptp

ts

tr

1
0.9

0.1

�1%

Rise time Tr. Time to get to 90% of final value from 10%

75



Characterization of Second Order Systems

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

• Tp ≤ 1.5

• Mp ≤ 20%

• Ts ≤ 4s

76



Second-Order Models: Summary

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = ω2

nu(t)
X(s)

U(s)
= G(s) =

ω2
n

s2 + 2ζωns+ ω2
n

• ζ: Damping ratio
• ωn: Natural frequency

• Many systems can be described with such a model.
• If your system is higher order, the general behaviour can often be described by the

dominant poles (the most unstable ones - those closest to the imaginary axis)
• Common performance parameters can be set by appropriate selection of ωn and ζ.

How do we choose the PID weights so that we can meet specific criteria?

• Ziegler-Nichols tuning + manual adjustments (root locus)
• Model-matching
• Methods in later lectures (generally requires higher-order controllers)

77



Second-Order Models: Summary

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = ω2

nu(t)
X(s)

U(s)
= G(s) =

ω2
n

s2 + 2ζωns+ ω2
n

• ζ: Damping ratio
• ωn: Natural frequency

• Many systems can be described with such a model.
• If your system is higher order, the general behaviour can often be described by the

dominant poles (the most unstable ones - those closest to the imaginary axis)
• Common performance parameters can be set by appropriate selection of ωn and ζ.

How do we choose the PID weights so that we can meet specific criteria?

• Ziegler-Nichols tuning + manual adjustments (root locus)
• Model-matching
• Methods in later lectures (generally requires higher-order controllers)

77



Example



Example

Suppose that we have a system which takes a force, and outputs a position:

G(s) =
V (s)

U(s)
=

21.53

s4 + 1.833s3 + 70.28s2 + 69.44s

Control the position of this system using a PD controller such that:

• Over shoot is less than MP = 40%

• Settling time Ts is below 10s
• Peak-time Tp is below 4s

Note: The transfer function to velocity is

G′(s) =
21.53

s3 + 1.833s2 + 70.28s+ 69.44

There is already an integrator here, so we’re using a PD controller.

78



Method 1: Root-Locus Design

Goal: Choose Kp so that our closed-loop poles are in the right place.
Idea: Plot the poles of the closed-loop system as a function of the gain Kp

G(s)
+

�
K(s)Yc(s) Y (s)

U(s)E(s)

The closed-loop system is:

Y (s) = G(s)K(s)(R(s)− Y (s))
Y (s)

R(s)
=

G(s)K(s)

1 +G(s)K(s)

Equivalently:

G(s) =
A(s)

B(s)
K(s) =

C(s)

D(s)
⇒ Y (s)

R(s)
=

A(s)C(s)

B(s)D(s) +A(s)C(s)

79



Root-Locus Design

Our controller is:

K(s) = Kp(1 + Tds)

Suppose we’ve chosen Td = 0.01, and we’re looking for a good Kp

Our closed-loop poles are given by the roots of the characteristic equation:

B(s)D(s) +A(s)C(s) =

s4 + 1.833s3 + 70.28s2 + 69.44s+Kp21.53(1 + 0.01s) := f(s)

We can plot how the four poles of the closed-loop system move in response to changes
in KP . This is the root-locus diagram.

To Matlab! sol_rlocus.m

80



Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

G′(s) =
21.53

s3 + 1.833s2 + 70.28s+ 69.44

System is complex, but there is clearly a dominant mode

81



Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

Much simpler system that captures the main properties

P (s) =
0.31

s+ 1
≈ G′(s)

Very common to neglect the ‘higher order dynamics’

81



Target System

Compute a second order system that satisfies the specified conditions:

• Over shoot is less than MP = 40%

• Settling time Ts is below 10s
• Peak-time Tp is below 4s

wn = 1.53 zeta = 0.52

−2 0 2
−2

0

2

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ζ ≈ 0.52 ωn ≈ 1.53

82



PD Control Structure

0.31

s + 1

+

�
KPYc(s)

U(s)E(s) 1

s

V (s)
Y (s)

Td

�

Closed-loop transfer function:

Y (s) =
1

s

0.31

s+ 1
KP (E(s)− TdsY (s)) E(s) = R(s)− Y (s)

Y (s)

R(s)
=

0.31Kp

s2 + (1 + 0.31KpTd)s+ 0.31Kp

Two parameters to choose, and two parameters to set
∴ we can choose any response we like!

83



PD Control Structure

Y (s)

R(s)
=

0.31Kp

s2 + (1 + 0.31KpTd)s+ 0.31Kp

=
ω2
n

s2 + 2ζωns+ ω2
n

Desired response

where ζ ≈ 0.52, ωn ≈ 1.53

KP =
ω2
n

0.31
= 7.55 Td =

2ζωn − 1

0.31KP
= 0.25

84



Pole Placement Result

0 2 4 6 8 10
0

0.5

1

1.5

Closed-loop response of simplified system

85



Pole Placement Result

0 2 4 6 8 10
0

0.5

1

1.5

Real closed-loop system with controller

85



Anti-Windup



Input Constraints

All real systems have input constraints

All the controllers you’ve seen assume that they do not

This is a problem!

Consider the simple system:

G(s) =
100

s+ 50

with a PI controller

K(s) = KP

(
1 +

1

Tis

)
with Kp = 3.5 and Ti = 0.01.

86



Example : Impact of Constraints

0 2 4 6 8 10

−2

0

2

O
ut

pu
t

0 2 4 6 8 10
−5

0

5

In
pu

t

87



Example : Impact of Constraints

0 2 4 6 8 10

−2

0

2

O
ut

pu
t

0 2 4 6 8 10
−5

0

5

In
pu

t

87



Example : Impact of Constraints

0 2 4 6 8 10

−2

0

2

O
ut

pu
t

0 2 4 6 8 10
−5

0

5

In
pu

t

87



Example : Impact of Constraints

0 2 4 6 8 10

−2

0

2

O
ut

pu
t

0 2 4 6 8 10
−5

0

5

In
pu

t

87



Saturation

No matter what we do, the input will satisfy the condition called saturation:5

u(t) =


umax if u(t) > umax

u(t) if u(t) ∈ [umin, umax]

umin if u(t) < umin

5We’ve written the saturation here as a symmetric term. It is also possible to have asymmetric saturation.

88



Anti-Windup

Preventing the integrator from growing or ‘winding up’ is called anti-windup

Idea: Detect when saturation is active, and turn off the integrator

• Only impacts the system when constraints are active
• Relatively simple to tune
• Can be implemented in continuous-time (traditional reason)

89



Example : Impact of Constraints

0 2 4 6 8 10

−2

0

2

O
ut

pu
t

0 2 4 6 8 10
−5

0

5

In
pu

t

90



PID - Summary

PID controllers are extremely useful:

• Used in the vast majority of simple systems
• Often the ‘lowest-level’ of control. More complex control built on top

A great deal of good literature available on tuning commercial PID controllers

Proportional • Sets the ‘aggressiveness’ of your system
Integral • Added to ensure zero steady-state offset

Derivative • Increase the damping of the system - improve stability

Impact of PID terms:
PID Gain Percent Overshoot Settling Time Steady-State Error
Increasing KP Increases Minimal impact Decreases
Increasing KI Increases Increases Zero steady-state error
Increasing Kd Decreases Decreases No impact

91


	Example
	Proportional Control
	Proportional Integral Control
	Proportional Derivative Control
	Proportional Integral Derivative Control
	Ziegler-Nichols Tuning
	Alternative Tuning Methods
	Model-Matching via PID
	Second Order Models
	Example
	Anti-Windup

